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The motion of moisture in soil is usually described by a nonlinear 
diffusion equation [13 based on Darcy's law. Yet there have been ex- 
periments [2-4] in which the qualitative picture of the moisture con- 
tent has differed from that given by the solution of the diffusion equa- 
tion. An attempt to explain the motion of water in accordance with 
these experimental data was made in [2]. For this purpose the whole 
network of capillaries in the soil was divided into two groups: wide 
main channels, through which the bulk of the liquid moves, and fine 
capillaries, which carry water to the main channels. Denoting the 
moisture potential in the fine capillaries by r and in the main channels 
by ~e (the effective potential in the terminology of [2]) we can write 
an equation indicating that the difference of these potentials is propor- 
tional to the rate of change of moisture content at any depth: 

Hence, in view of the second condition of (3), we obtain 
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The last relationship shows that f (t) = dA/dt, i . e . ,  ~(t) is the rate 
of drying of the layer [0, HI. When K = 0 the first condition of (3) be- 
comes a classical condition of the second kind; the physical sense is the 
same as indicated above. We note that the first boundary relationship 
(3) was obtained in [6] from other considerations. 

We postulate now that D(w) = const. This condition is often ful- 
filled if the range of moisture variation is small. In this case the first 
condition of (3) is replaced by the simpler condition 

Ow/Ox [x---o = 11 (t) (4) 

Substituting the effective potential te found in this way in the equa- 
tion of flow of a single-component compressible fluid [1], 
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we obtain a differential equation, which we will call the modified 
moisture-transfer equation: 
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( O < z < H )  (D = a ~ , K = 0 *  aK1). (:) 

Here D is the diffusivity coefficient and a is the coefficient of 
moisture conduction, Equation (1) and the arguments leading to it are 
similar to those which are usually used to describe the motion of a 
liquid in fissured-porous media [5-8]. The boundary-value problems 
for such equations are usually formulated for inconsistent initial and 
boundary conditions. 

This paper describes one of the kinds of mixed problems, for which 
Eq. (1) can be used and gives the solution of this problem in the case 
of constant coefficients and consistency of the initial and boundary 
conditions. 

We note that although the unidimensional equation (1) is considered 
here (x is the vertical coordinate) this case is sufficiently characteris- 
tic. Conversion to a larger number of measurements, introduces only 
technical difficulties. 

To Eq. (1) we add the initial condition 

w (2, t)It=o = ~ (2) (2) 

and the boundary conditions at the ends of the segment 

O~w l I Ow 

The physical sense of the second condition of (3) is c lear - i t  is the 
condition for absence of moisture flow across the boundary x = H. The 
first condition of (3) is treated as follows. We denote by 

H 
A ( t ) =  ~ w(x, t) d2 

0 

the moisturecontent of thelayer [0, H]at t imet.  Integrating Eq. (1) in the 
limits 0 to H and altering the order of integration and differentiation, 

dA F Ow O~w "] Ix=H 
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Here 9~(x) is from Eq. (2), The limiting case K = 0 requires addi- 
tional consideration, since Eq. (5) is indeterminate for K = 0. We will 
prove that 

t lira I1 (t) = - -  ~ ! (t) (B) 
K---~0 

and in this way will show that condition (4) becomes a classical condi- 
tion of the second kind. For the proof we replace the variable of inte- 
gration t - r by - K [ / D  and we introduce the symbol 
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Proceeding from the obvious equality 

/ ( t )=  i exp(~)l( t )d~ 
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we obtain 

a(2,  t) - ~ )  = 
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It is easy to see that 
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Hence, for an assigned s > 0 and small K we obtain 

0 
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Here f ' ( t )  is assumed to be bounded. The last inequality results 
from the possible reduction of K. Since 

lim~p'(O) exp ( - -  D t ) = O ,  
/f--+O ~ -  

equality (6) is proved. 
We proceed to the solution of Eq. (1) with initial condition (2), 

boundary conditions (4), and the second ~ondition of (3). We assume 
that the continuity conditions of the iimiting reIationships j~(0) = 
= ~o'(0) and ~o'(H) = 0 are fulfilled. It is easy to find a replacement  for 
the unknown function which will make conditions (2), (4) and the 
second condition of (3) homogeneous. For instance, u(x, t) = wf~(0) - 
- f~(t)~o(x) for ]1(0) = ~o'(0) ;~ 0 or u(x, t) = w - ~o(x) for f,(0) = ~o'(0) = 
= 0. For function u(x, t) the problem then assumes the form 

Here 

and 

Ou a~t Oau 
Ot = D~o'~z~ + K o--[O~x= @ F (x' t), 
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F = - - h '  (t) ~p (~) + D h  (t)~" (~) + 

+ K/ , '  (t)~" (x) when h. (0) 4 : 0  

F = D q 0 " ( x )  when / , (0)  =q0 ' (0 )  = 0 .  

The solution of the homogeneous equation from (7) is sought in the 
form X(x)T(t). To determine X we obtain Dx" = -kn(X - KX") or 

X" + ~tnX = 0, X ' ( O ) = X ' ( H ) = O ,  V n = s 1 6 3  

It is known that nontrivial solutions of X exist only for Pn = nrr/H 
and are given b y X  =B n c o s  PnX. We will then s eeku (x , t )  i n r h e  form 
of a series: 

oo 
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We expand F(x, t) in a Fourier series: 

co Ii 

Fn ( t )cosT~x , F n ( t ) =  7~" F([, t)eosT~- ~d[ 
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Substituting expression Fix,t)  into (7) we solve the obtained equation 

u n' (t) (i ,-}- Kp, rz =) -[- D~nSU n (t) = F (t) 

provided that Un(0) = 0, which follows from (7) and representation (8). 
We have 

t 
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8ubstffuting this expression and the value of  Fn(t ) into series (8), we 
obtain 
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2 oo 
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~z=0 

(10) 

In [8] the solution of another boundary-vaIue probIem for Eq. (1) 
in the case of inconsistent conditions (distribution at the initial instant 
is linear; at the ends of the segment- -zero  flow and constant value of 
the required function, respectively) was given in the form of a similar 
t r igonometric series. The question of the regularity of the presented 

solution is not considered. 
Solution (9) is a series which is majorized by a convergent numeri-  

cal series 

co 
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if F(x, t) is bounded. Hence, series (9) converges uniformly and, hence, 
is a generalized solution of problem (7). Representation (10) for the 
kernel G(x, g, t - r)  shows directly that the series for 8u/Ot converges 
uniformly. Let the l imit  functions f( t )  and ~o(x) be such that almost 
everywhere on [0, H] there is a bounded derivative 8ZF(x, t)/Ox s. In 
this case the sequence of equalities obtained by successive integration 

by parts and the use of the equalities 

ag ]~=0-0E ~=H=O 

show the existence of a second derivative of the function u(x, t): 
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In a similar way we can show the existence of the derivative 
0au/0tSx 2. Thus, if  the additional continuity conditions for the functions 
f( t )  and r are fulfilled, formula (9) gives a regular solution of prob- 

lem (7). 
For the operator L and its conjugate operator M, according to 

Lagrange, 

Ou O~-u Oau Ou O~-n Os~ 
Lu = "gT--D 0-~--  K ~  , Mu = - -  ~ -- D ~ - : -  K gt 9,:  ' 

we have a formula which is easily verified: 

u (x, t) My (x, t ) - -  v (x, t) Lu (x, t) = 
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Function G(x, ~, t - r)  is a generalized solution of the equation 
Lx, t G = 0 (the subscripts to the operator L denote that the derivatives 
are taken with respect to these variables). It is easy to confirm that 

t 1[ 

o o 

i. e . ,  that G as a function of the arguments [ and "r satisfies the equa- 

tion MG = 0 in the generalized sense. In (11) we put u = fl(r)so(g), v = 
= G(x, $, t - T) and integrate the equality in the limits [0, H] and 

[0, t] with respect to g and r, respectively: 

H 

- I i 
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The disagreement between the experimental  data and the solution 
of the diffusion equation, which was noted at the beginning of the 
paper, is as follows. If at the initial instant the upper layer of soil is 
moister than the lower and intense evaporation takes place, then, 
according to the experimental  data [2-4],  the moisture content of the 
lower, drier layers decreases as the upper layer dries out, I f t hemot ion  
of the water obeys the diffusion equation, the gradient of the moisture 
content between the upper and lower layers will create a flow of mois-  
ture into the tower layer, at least at ~he start of the process, i . e . .  a 
flow against the moisture gradient. 

Using formula (13) we can illustrate how Eq. (1) simulates the 
motion of moisture along the moisture gradient. We assume for s im-  
plicity that f(t)  is chosen so that fi(t) = fl(0) = const. The expression 
for the moisture content wiI1 then rake the form w = a - ~  (x, t) + 
+ ~o(x). When g = 0 (13) becomes the usual solution of the diffusion 
problem u0(x, t) and, hence, to demonstrate the motion of moisture 
along the moisture gradient it is sufficient to show that when K < 0 
the inequality u0(x, t) u (x, t) < 0 can be satisfied. 

If we assume t is so small  that the second term of the right side of 
(13) can be neglected and K is such that 

We assume that fi(t), ~o(x). and their derivatives are bounded. Then, 
performing integration by parts on the right side of equality (12) and 
tramferr ing the differentiation to ~(g) and f , ( r )  we note that integrals 
with kernels aG/Og and 0zG/i~rOg converge uniformly, Since the series 
for G is majorized by a convergent numerical  series. We will assume 
further that  Lg, T, [ f i  ~] = F (g, ~'), ~o'(0) = St(0) and ~'(H) = 0. In addi-  
tion, representation (10) directly ~bows that 

06(2, O, t - -  ~) ~ OG" (z, H, t - - x )  
- - 0 .  o~ o~ 

Taking into account what has been said, and also equality (9), we 
obtain from formula (12) 
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In a sire flat way we can use ( l l )  to express u(x, t) in the case in which 
f ~ ( o )  = , , ' (o )  = o :  
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We note that as K --~ 0, function G(x, ~, t - r )  has a limit G0(x, 
6, t - ~'), which is the Green's  function of the problem 

0K 02l~ 

~ / =  D ~ ,  ~ It:~ = r (2), 

01~ x = 0  0 u  x = H  O "5"~z = - -  l ( t ) , ~ = 0 .  
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the inequality can be satisfied if a decreasing function ~0(x) > 0, 
r  < 0 is chosen as the initial distribution. We note that the choice 

of a decreasing function as ~ is natural if  we wish to explain the 
"anomalous" movement  along the moisture gradient. In fact, if ~o' =- 
-=- 0, the reduction of moisture content at x = H is a consequence of 
evaporation. In the case of ~ '  > 0 diffusion also promotes a reduction 
of moisture content at x = H. 

In [2] the case of a diminishing initial moisture distribution was 
experimental ly verified. An increase in K can lead not only to a re-  
duction in the influx of mois ture  at the bottom of the layer (x = H), 
but also to an outflow of moisture, i . e . ,  the experimental ly observed 
effect. 
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Formula (9) in this case after conversion from u(x, t) to w(x, t) 

gives the solution of this problem. 25 March 1966 Leningrad 


